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A computational scheme is developed to integrate a set of self-consistent equations 
describing the evolution of the field structure in free electron lasers. The proposed scheme is 
fourth-order accurate in space and third-order accurate in time. The boundedness of solution 
is provided by a number of integrals in the scheme. Stationary and pulse electron injection 
regimes are investigated. In both cases the scheme permits effective calculation of the 
following regimes: (a) stationary single-mode generation (or, correspondingly, generation of 
identical pulses), (b) periodic self-modulation, (c) stochastic self-modulation. 0 1985 Academic 

Press, Inc. 

1. INTRODUCTION 

One of the most complicated problems of the numerical simulation of the 
interaction between electromagnetic waves and relativistic particle beams in free 
electron lasers (FELs) is the investigation of nonstationary multifrequency generation 
processes. An important feature of FELs is that the dimensions of their elec- 
trodynamic systems are much larger than the wavelength, so, the amplification band 
contains a large number of eigenfrequencies, which, as a rule, are quasi-equidistant. 
Thus, in the Stanford infrared FEL [I] the number of amplified modes was -104. To 
describe the evolution of the amplitudes of these modes within the framework of the 
mode approach [2], the number of equations of the same order is necessary. 
Meanwhile, since the period of the current pulse sequence is close to the period of the 
wave pass through the cavity, the phases of modes are locked and their amplitudes 
are correlated so that the modes compose a slowly evolving wave packet. Therefore, 
it is sufficient to keep an eye on several tens of points given on the packet length in 
terms of the space-time approach and it is no wonder that this method was preferred 
in the most of papers [3-B]. 

In its direct form this approach requires the calculation of the interaction between 
electrons and a synchronous wave for each wave pass through the cavity [5-61. Such 
a simulation is very effective, if the radiation losses are rather high for a pass. 
However, if the radiation losses decrease and, consequently, the mirror reflection 
coefficients R 1,2 tend to unity (the case of a high-quality cavity), a large number of 
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passes (-l/(1 -R, - R2)) is needed for oscillations to set up. In such a situation, 
taking into consideration small variations of the wave amplitude for one pass through 
the cavity, it is reasonable to change the discrete variable n (the number of the pass) 
by the continuous variable r (slow time) [7]. Then the time integration step Ar will 
correspond to An = Az/(l -R, . RJ real wave passes and the closer to unity the 
reflection coefficients, the greater the advantages of the method proposed in [ 71 than 
that in [5,6] (e.g., in the Stanford experiment [l] R i e R, N 0.965 and An/At N 30). 

Besides, a considerable decrease of the time of computation can be achieved by 
optimization of the time-consuming procedure-integration of the electron motion 
equation (generalized pendulum equation). For this purpose we have used a new 
numerical algorithm [9] ( see Sect. 3), having a number of advantages compared with 
the standard technique (few computation operations for one integration step, a high 
order of an accuracy, the presence of some numerical integrals that provide boun- 
dedness of solution) which enables one to use larger computation steps. This 
algorithm can be recommended also for calculation of FELs with low-reflection 
mirrors and, consequently, with high pulse amplification for one pass. In particular, it 
has been used for the numerical simulation of FELs with a distributed feedback [lo]. 

The scheme of computation as a whole was a very effective one for investigation of 
FELs both with pulse and stationary electron injection and permitted us to study the 
regimes of stationary generations as well as the regimes of periodic and stochastic 
self-modulation (see [S] and Sect. 4). 

2. THE DIFFERENTIAL EQUATIONS 

For FEL-generators with high-reflection mirrors and, consequently, with low wave 
amplification for one pass the equations of wavebeam interaction in the case of 
stationary electron injection have the form [7,8] 

$+A=j’Idz, 
0 

* 6 = Re(Aeie). 

Initial and boundary conditions are given by 

q,,o = 4J E [O, 2x1, ( 1 g+; e/,=,=s (3) 

for electrons and 

A(x,z=O)=A,(x), 

A(x,r)=A(x+ rr,r) 

W-9 
(4b) 



82 BOGOMOLOV AND YUNAKOVSKY 

for the wave, Here A@, r) is the slowly varying wave amplitude, 8, and 0 the 
initial and current phases of electrons with respect to the wave, 1(x, z, r) = 
(1/27r) Ii” epic dt9, the electron current harmonic synchronous to the wave, L the 
dimensionless length of wavebeam interaction space, T, the wave reversal period, 6 
the initial mismatch of synchronism between electrons and the wave. 

In the case of pulse injection [ 1) the electron motion equation (2) and the initial 
conditions (3) remain unchanged, while the equation for the wave (1) is modified 
]7,81, 

i?A 8A 
I 

L 

az-~ax+A= g(x - z)I dz, 
0 

where 

g(x -z) = 1, O<x-z<T,, 

= 0, x-z<O,x-z>T, 

E is the tact synchronism mismatch; T, is the pulse sequence period. In its turn, the 
boundary condition (4b) is changed by 

A(t,L+T,)=O. 

The dimensionless efficiency of the FEL is given by [8] 

(6) 

FIG. 1. Characteristics of the equation for the wave in the plane x, r and electron motion equation 
characteristics in the plane x, z in the case of pulse electron injection. 
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To visualize the given equations Fig. 1 displays the characteristics of Eq. (5) in the 
plane x, r and the characteristics of Eq. (2) in the plane X, z. Note that the charac- 
teristics of Eq. (1) (the case of stationary electron injection) are parallel to the 7 axis. 

Using the specific form of Eqs. (l), (2) (or (l), (5)), one can apply the following 
splitting procedure. At the given time level 7 = 70, assuming that A(x, rO) is known, 
we first numerically integrate the electron motion equation (2), then calculate jt I dz, 
that, in its turn, permits us to execute one time step in Eq. (1) (or (5)). Thus, the 
problem of the numerical scheme designing for the electron motion equation can be 
considered independent of that for the equation for the wave. 

3. NUMERICAL INTEGRATION OF THE ELECTRON MOTION EQUATION 

We introduce a rectangular uniform grid in the plane x, z with a mesh size in x 
coordinate equal to that in z coordinate. The necessity of x and z mesh size equality 
is explained by the wave amplitude values A which are known only at the grid points, 
while the electron motion equation should be integrated along the characteristics 
whose direction is labeled by 2. 

Introduction of 8, variable discreteness (the use of the method of large particles for 
the electron beam simulation) reduces the initial problem to the solving of N x N, 
independent ordinary differential equations 

2 3’4 m 
A = Re(Aeie’.“), 

a2 

(7) 
6 = k, k= l,N,m= l,N,, 

r=O 

where N is the number of macroparticles moving along one and the same trajectory, 
N, the number of trajectories (the number of grid points in x coordinate). 

Later on, k and m indices will be omitted (we shall consider only one equation for 
the fixed k and m) and the points will mean differentiation with respect to 1. Besides, 
h will denote a mesh size in x and z &ordinates, while Al = fi h will be an 
integration step along the characteristics. 

Since the right-hand sides of Eqs. (1) (2), (5) contain the 0 variable only as an 
argument of exponents, it is natural to introduce the new unknown variable 
p = ~0, + iv2 = eie. Then Eq. (7) becomes 

cj’ - qi’cp* - fip Re(Ap) = 0 (q-j* = e-ie), 

(P(O) = e i(Zn(k- 1)/N) 
, yi(0) = iQp(0). 

The latter, in its turn, is equivalent to the following set of equations 



84 BOGOMOLOV AND YUNAKOVSKY 

- - 
4%(0)=c0s 2n(k 1) N 7 rp,(O) = sin 2n(k 1) N , 

VIP) = -4A92m w2P) = 4A@)~ 

A, = Re(A), A, = Im(A). 

This set of equations can be inregrated by some standard technique. Two evident 
integrals of the the set (8) can be used to check the correctness of calculations 

(P:+v:= 1, 

PlWI +v2w2=0. 

P-4 

Pb) 

Note that there is a solution correction procedure given later which ensures precisely 
the relationship (9a) (that provides boundedness of solution with respect to p, and 
q2) and decreases the truncation error. But such a procedure is absent for the integral 
(9b). Moreover, the structure of this integral allows the large values of v, and v2. 
Besides, when q, - 1 (rp2 - 0) or rp, - 1 (vi - 0) one may expect the appearance of 
an explosive instability such as l/(t - to) usual for the equation tj = w2. The above- 
mentioned considerations are not in favor of such a simple approach to the solving of 
Eq- (7). 

We now twice integrate Eq. (7) over the interval [O,A] (symbol V denotes 
variables at the initial point of the characteristic and symbol A at the calculated 
point) 

,j = 0 + ,$A1 + 4 St’ (Al - 1) Re(Aeie) dl, 

and set 

Then 

U+iV=eie, 

p + iv = eidA1. 

o+ if= (o+ if)(# + iq) el12iS~‘(Al--I)(A,u--AIY)d[, 
c$ + i$= ($ + i$) el/2iAlS{‘(A,u-A,v)e 

(loa) 
( lObI 

(11) 
(12) 
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Next we calculate approximately the right-hand side integrals of (11) and (12), so 
that both (11) and (12) will be fourth-order accurate relationships. In other words, we 
must calculate the integral in (11) with an accuracy O(A4) and the integral in (12) 
with an accuracy O(A13). For this purpose, in the first case we use a linear inter- 
polation of the function (A I U-A, V) and in the second, we apply the trapezoid rule, 

ei(“2)‘1= 1 +$j[2(A,O--A,ri)+ @,ir--A,P)] +O(A4), 

ei('/2)'2Ar= 1 +~jl(A,b-A,~)+(A,0-A,c')]+O(~z4) 

and 

O+iP=(~+iv)(q5+iyq l+~i,2(‘i,ir-A*v-) 
I 

+ (a,o-a,P)] + O(flZ4) ) 
I 

Q+G=((P+W) 
I 

l+~i,(~~ri-A,~)+(A,O-A,~)]+o(dr’) . 
1 

Introducing new designations 

c+id=(Lj+iV)((p++@), 

*L&!t 
12 ’ 

F=A,U-A,V, 
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we obtain 

(1 +dAL~,)ir-dALx&~=c-dAL2#+0(A14), 

-cALzti,Ij+(l +cAL&)P=d+cAL2i++0(A14), 

4 = @ - 3AL@ + P) + O(A14), 

3 = 5 + 3ALyi(# + p) -I- O(AZ4), 

which, if we omit the fourth-order small terms, yields 

o=& [c+AL(&2df)], 

p=-& [d+AL@, +2ci+)], 

where 

Note that 

det = 1 + AL(ca, + dAl,). 

(13) 

(14) 

o2 + p2 = 1 + 2AL(c& + d&) + O(A14) 
det’ 

= 1 + O(AZ4), 

i.e., the obtained solution with an accuracy O(Z4) satisfies the relationship 

u2 + v* = 1 (15) 

which must be exactly fulfilled due to the substitution (loo). Step-by-step 
accumulation of such an error may lead to the instability. To avoid this, we propose 
the following procedure of solution correction, which provides a more precise 
solution exactly satisfying relationship (15). 

The idea of the procedure suggested is clearly illustrated by Fig. 2; in the plane U, 
V we return the point to a unit circle along the radius vector. It is evident that 
thereby we only approach the calculated solution to the exact one. 

The point return to the circle is described by the formulas 

(16) 

(17) 

which yield 

o;+ Pi= 1. 
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FIG. 2. A solution correction procedure for the electron motion equation. 0, v are the initial values; 
0, P noncorrected values, fin, pti corrected values; oe,, fe exact values at the calculated point. 

It can be also easily shown that 

I??,, = 0 + O(A14), vn = P + O(A14). 

To find on, vn,, it is not necessary to calculate the value of det (14) and perform 
division in formulas (13). 

Doing the same with rp and w variables, we obtain 

and 

$3; + Ij5, = 1. (18) 

Note that together with integrals (17) and (18) the following relations take place: 

cz + d2 = 1, 

I, = cI;T, + dvn = 1 - 1 O(A14)1, 

I, = do,, - CT,, = O(A1’). 

(194 

(19b) 

Moreover, two last relations can be used to check the correctness of the calculations. 
Having solved Eq. (2) (i.e., the solutions of Nx N, independent ordinary 

differential equations such as (7)), it is easy to calculate the values 
I = (1/2n) 1:” e A’ de, and B = If; I dz by the known formulas of numerical 
integration. 
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4. NUMERICAL INTEGRATION OF THE EQUATION FOR THE WAVE 

When passing from the curent time level to the next one we wished to design a 
scheme of a rather high order of accuracy. But the values B = ii Idz in the right- 
hand side of Eq. (1) (or (5)) are known only at the current level. Three-level schemes 
seem to be useful to reconcile our wishes and possibilities. 

In paper [ 111 the three-level scheme stable for At < h (Ar is the time step) 
suggested in [ 121 was used to solve an equation similar to (5). However, that scheme 
is only second-order accurate in time. In our opinion, the integration along the 
characteristics is more natural and simple. If we integrate Eq. (5) along its charac- 
teristics < = x + EZ, then Eqs. (5) and (1) become practically the same. The only 
difference is that in the case of stationary electron injection, the direction of charac- 
teristics coincides with the direction of r variable and it is possible to ignore the strict 
relation between mesh size in the x coordinate and time step. Therefore, all further 
reasoning will concern only Eq. (1), while for Eq. (5) we shall give the final results 
and pay attention to some details. 

The substitution E = Ae’ transforms Eq. (1) to the equation ,#? = Be’ (the point 
denotes differentiation with respect to the characteristic of the equation for the wave). 

One of the possible third-order accurate schemes is obtained as follows 

= E, + Bn(eA’ - 1) + B,, -B,-I 
As (1 -eA’ + Aze’“) + O(At3), 

where 12 is the time level number. Neglecting the third-order small terms and returning 
to the A variable we obtain the following computational scheme 

“+, =A,epA’ +B, 1 - (’ vAr)~~pepA’) AT 

A * (20) 

The truncation error for this scheme is equal to 

e1 = +(k’, + xi,) A.r3 + O(A74). 

To begin the computation, the following procedure is applied. Additional time 
levels are introduced between zero and first ones: the first additional level 
corresponds to t = A2/2k, the second one to r = AT/~~-‘, etc. Calculation from the 
level r = 0 to the level r = Ar/2k can be performed using a two-level scheme, e.g., 

A n+l =Ane-At’2k + B,(l - e-Ar’2’). 
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FIG. 3. A computational grid in the plane x, r for integration of the equation for the wave in the 
case of pulse electron injection (dr = h/c, E = 2). 

In further calculations a three-level scheme is useful. Although the scheme (21) is 
only second-order accurate, it is possible to perform the first computational step with 
any necessary accuracy by choosing k (in practice, the value k m 3 is sufficient). 

Finally, we briefly consider the case of pulse electron injection. The scheme (20) is 
also applicable to Eq. (5). It is necessary only to keep the strict relation between x 
mesh size and time step: Ar = h/s (Fig. 3). To begin the computation, the scheme 
(21) (k = 0) has been used. The second-order accuracy of this scheme is quite 
enough, since the characteristics starting from r = 0 level do not contribute essentially 
to the solution. An implicit third-order accurate scheme together with iterations 

A n+I=A,e~A’+~(B,+, + BneeAr) 

gave the same results as the scheme (21). 
The scheme (22) without iterations was used for executing the first computation 

from the line x = T, + L. In place of B, + 1 a corresponding value of this function at 
the previous time level was taken. Note that in this case A,, = 0, B, = 0 and (22) 
becomes 

A 
At 

n+1=- 2 
B n+1* 

5. RESULTS 

Analytical Test 

Let in Eqs. (2), (3), 6 = 0, and the wave amplitude small enough, i.e., /A 1 < 1. 
Then 8 can be represented as 

e=e,+w, (23) 
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where 8, is the solution of Eqs. (2~(3) for A = 0 and w 6 1. Substituting (23) into 
(2), multiplying both sides of the equation obtained by -(i/2x) eCieo, and integrating 
over the interval 8, E [0,2x] we have 

where A * is the complex conjugate with respect to A. Linearizing both sides of the 
latter equation with respect to the state A z 0, w = 0, we arrive at 

TABLE I 

The Solution of the Linearized Electron Motion 
Equation: (a/ax + +?z)‘Z = -iA/ 

-1m B={‘g(x-z)Zdz 
L 0 1 

X Analytical Numerical 

0 0 0 
0.4 0.0003 0.0003 
0.8 0.002 1 0.0021 
1.2 0.0072 0.0072 
1.6 0.0171 0.0171 
2.0 0.0333 0.0334 
2.4 0.05 76 0.0576 
2.8 0.0915 0.09 14 
3.2 0.1365 0.1362 
3.6 0.1365 0.1362 
4.0 0.1365 0.1362 
4.4 0.1365 0.1362 
4.8 0.1365 0.1362 
5.2 0.1363 0.1359 
5.6 0.1344 0.1340 
6.0 0.1293 0.1290 
6.4 0.1195 0.1191 
6.8 0.1032 0.1028 
1.2 0.0789 0.0786 
1.6 0.045 1 0.0448 
8.0 0 0 

(24) 

Notes. L = 3.2, T,= 4.8, 6=0, N= 16, A = 0.05, 
h=O.l. 



FIG. 4. Dynamics of the wave envelope structure in the case of pulse electron injection for various 
parameter values: (a) L = 3, T,= 5, N= 16, E = 2.5; (b) L = 6.5, T, = 5, N = 16, E = 2.5; (c) L = 10, 
T,=6, N=32, E= 1. In all cases 6=0, h=O.l. 
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Now, if A = const, then 

and the function B = 15 I dz in the case of pulse injection is (assume, that L < T,) 

=-+[L'-(x-T,))], T,<x<T,+L. 

Table I displays the results of this test. 

TABLE II 

Values of Integrals (19a) and (19b) for Various Regimes in FELs 
(the Case of Pulse Electron Injection) 

Point Number I, Point Number 

(a) 0 1 0 Cc) 0 1 0 
5 1 -0.0016 5 1 -0.0010 
10 1 -0.0003 10 1 0.0005 
15 1 0.0014 15 0.99999 0.0036 
20 0.99999 0.0032 20 0.99998 0.0065 
25 0.99999 0.0042 25 0.99999 0.0023 
30 1 0.003 1 30 0.99997 -0.0073 

35 0.99998 -0.0068 

@I 0 1 0 40 1 -0.0026 
5 1 -0.0014 45 1 -0.0024 

10 1 -0.0030 50 0.99999 -0.0043 
15 1 -0.0043 55 0.99999 -0.0042 
20 0.99999 -0.0053 60 1 -0.0019 
25 0.99999 -0.0054 65 1 0.0006 
30 0.99999 -0.0039 70 1 0.0006 
35 1 -0.0008 75 1 -0.002 1 
40 1 0.0015 80 0.99999 -0.0044 
45 1 0.0012 85 1 -0.0034 
50 1 -0.0005 90 1 0.0004 
55 1 -0.0015 95 1 0.0025 
60 1 -0.0009 100 1 0.0011 
65 1 -0.0001 

Notes: (a)L=3, r,=5, N= 16, e=2.5; (b)L=6.5, r,=5, N= 16, &=2.5; (c)L= 10, r,=6, 
N= 32, E = 1. 
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7=27 

: : 
\ 1 
L’ 

E 
d 

t 

1145 

7=61.6+16.9k k=0.1,2... 

FIG. 5. (a)-(f) Periodic Automodulation. The frames from FEL film, demonstrating the evolution 
of the wave envelope and amplitudes of its harmonics in the case of stationary electron injection. 
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Numerical Experiments 
The method based on the transition to the slow time and its numerical realization 

permitted to compute effectively the regimes of Stanford experiment [l] (generation 
of identical pulses), moreover, to advance considerably into the region of periodic 
and stochastic self-modulation regimes. And here an analogy with hydrodynamic 
problems is traced, when exceeding some threshold values of the injection current (an 
analogy with threshold values of the Reynolds number) three consecutive stages take 
place: (a) generation of identical pulses in the case of pulse electron injection or 
stationary single-mode generation in the case of stationary electron injection; 
(b) periodic; (c) stochastic self-modulation. Figs 4a, b and c displays the dynamics of 
the wave envelope structure in the case of pulse electron injection for different 
parameter values. Correspondingly, Tables IIa, b, c show a behavior of integrals 
(19a) and (19b) ( see Sect. 3) at the fixed time level for some macroelectron with the 
same parameter values. 

Film 

Figure 5 displays some frames from an FEL film which demonstrates the evolution 
of the wave envelope and the amplitudes of its harmonics in the case of stationary 
electron injection. A periodic self-modulation regime calculated for the following 
parameter values: L = 4.8, T, = 12, A7 = 0.05, h = 0.1, N = 16, 6 = 0, is shown. 

Having performed 1632 computation steps (7 = 81.6), all the amplitudes of 
harmonics become stationary, i.e., a certain structure of the wave envelope gyrated on 
a cylinder with gyration period Tg = 16.9 is established. The film has a frequency of 
one frame for every one computation step. 

In conclusion we note that the scheme presented here can be easily modified in 
order to take into consideration the transverse boundedness of the wave field (formed 
because of diffraction) and the conjugate effect of the longitudinal diffusion of the 
wave packet (nonequidistance of the spectrum from the mode point of view) as well 
as tapering of the wiggler or uniform magnetic field and the dependence of the mirror 
reflection coefficients on the frequency. 
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